
ARTICLE

Determining the depth of insertion of dynamically invisible
membrane peptides by gel-phase 1H spin diffusion heteronuclear
correlation NMR

T. Wang • H. Yao • M. Hong

Received: 3 February 2013 / Accepted: 10 April 2013 / Published online: 20 April 2013

� Springer Science+Business Media Dordrecht 2013

Abstract Solid-state NMR determination of the depth of

insertion of membrane peptides and proteins has so far

utilized 1H spin diffusion and paramagnetic relaxation

enhancement experiments, which are typically conducted

in the liquid-crystalline phase of the lipid bilayer. For

membrane proteins or peptide assemblies that undergo

intermediate-timescale motion in the liquid-crystalline

membrane, these approaches are no longer applicable

because the protein signals are broadened beyond detec-

tion. Here we show that the rigid-solid HETCOR experi-

ment, with an additional spin diffusion period, can be used

to determine the depth of proteins in gel-phase lipid

membranes, where the proteins are immobilized to give

high-intensity solid-state NMR spectra. Demonstration on

two membrane peptides with known insertion depths shows

that well-inserted peptides give rise to high lipid cross peak

intensities and low water cross peaks within a modest spin

diffusion mixing time, while surface-bound peptides have

higher water than lipid cross peaks. Furthermore, well-

inserted membrane peptides have nearly identical 1H cross

sections as the lipid chains, indicating equilibration of the

peptide and lipid magnetization. Using this approach, we

measured the membrane topology of the a-helical fusion

peptide of the paramyxovirus, PIV5, in the anionic POPC/

POPG membrane, in which the peptide undergoes inter-

mediate-timescale motion at physiological temperature.

The gel-phase HETCOR spectra indicate that the a-helical

fusion peptide is well inserted into the POPC/POPG

bilayer, spanning both leaflets. This insertion motif gives

insight into the functional role of the a-helical PIV5 fusion

peptide in virus-cell membrane fusion.
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Introduction

The depth of insertion of membrane peptides and proteins is

an important aspect of membrane protein structure deter-

mination. A wide range of biophysical techniques such as

fluorescence spectroscopy (Chattopadhyay and London

1987; Kleinschmidt and Tamm 1996; Voglino et al. 1999;

Zoonens et al. 2008), neutron diffraction (Bradshaw et al.

1998; Chenal et al. 2009), hydrogen–deuterium exchange

combined with infrared spectroscopy (Hohlweg et al. 2012),

have been used to determine membrane protein depths.

Compared to these techniques, NMR spectroscopy has the

advantages of providing site-specific depth information

without introducing bulky probes that may perturb the

structure of the membrane proteins or lipids. One NMR

approach is to use paramagnetic relaxation enhancement

(PRE) (Solomon 1955) of nuclear spins induced by para-

magnetic ions bound to the membrane surface (Buffy et al.

2003; Grobner et al. 1999; Hong and Su 2011; Hong et al.

2012), by dissolved oxygen in the membrane (Al-Abdul-

Wahid et al. 2011; Prosser et al. 2000), or by spin labels

incorporated into lipid molecules (Esposito et al. 1992; Hilty

et al. 2004; Jacob et al. 1999). Depending on the distances of

the nuclei from the paramagnetic centers, the T1 or T2

relaxation rates of the nuclei are enhanced to varying

degrees.
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The second NMR approach for depth determination

utilizes 1H spin diffusion from lipid and water to the pro-

tein (Huster et al. 2002; Kumashiro et al. 1998). In the

liquid-crystalline (LC) phase of the membrane where the

lipid chains and water are highly dynamic while the protein

is immobile, the lipid and water 1H magnetization can be

readily selected and allowed to diffuse to the rigid protein

(Fig. 1a). The result of this distance-dependent intermo-

lecular spin diffusion is detected as correlation signals

between the protein 13C (or 15N) and lipid/water protons in

a 2D heteronuclear correlation (HETCOR) experiment

(Huster et al. 2002). This LC-phase 1H spin diffusion

technique has been applied to a number of membrane

peptides and proteins such as bacterial toxins (Gallagher

et al. 2004; Huster et al. 2002), antimicrobial peptides

(Mani et al. 2006; Su et al. 2011; Tang et al. 2009), and

cell-penetrating peptides (Su et al. 2008).

However, the LC-phase 1H spin diffusion technique

cannot be applied when the membrane protein of interest

undergoes intermediate-timescale motion in the lipid bilayer

and causes line broadening and signal loss. This interme-

diate-exchange broadening results from the intrinsic rota-

tional diffusion of membrane proteins, whose rate depends

on the radius of the membrane protein, the viscosity of the

lipid bilayer, and the temperature (Saffman and Delbruck

1975). When rotational diffusion occurs on the microsecond

timescale in the LC membrane, it interferes with 1H

decoupling and polarization transfer processes in the solid-

state NMR experiments, thus causing line broadening. This

exchange broadening has been reported for various mem-

brane peptides such as the influenza M2 transmembrane

peptide (Cady et al. 2007) and the fusion peptide (FPK4) of

the parainfluenza virus 5 (PIV5) (Yao and Hong 2013). In

the absence of detectable signals, the depth of insertion

cannot be determined using the LC-phase 1H spin diffusion

technique.

Figure 2 shows an example of intermediate-exchange

broadening of the 13C magic-angle-spinning (MAS) spectra

of the PIV5 fusion peptide bound to the POPC/POPG

membrane. The 13C signals of nine labeled residues, dis-

tributed throughout the peptide, were undetectable at

293 K, but became strong and well resolved at 243 K, in

the gel-phase of the membrane. The Ca and Cb chemical

shifts of all labeled residues indicate an a-helical confor-

mation (Yao and Hong 2013). Because of this exchange

broadening, it was not possible to determine the membrane

topology of the a-helical fusion peptide using the LC-phase
1H spin diffusion experiment. In contrast, in the neutral

POPC membrane, FPK4 adopts a b-strand conformation

(Yao and Hong 2013) and is immobilized at ambient

temperature, giving high intensities. Thus, the depth of

insertion of the b-strand fusion peptide could be

determined using the 1H spin diffusion technique. The

peptide was found to lie on the surface of the POPC

membrane, dehydrating the lipid headgroups (Yao and

Hong 2013).

Viral fusion proteins such as the PIV5 F protein have

long been important structural biology targets because of

their essential role in mediating the entry of enveloped

viruses into cells (Harrison 2008; Lamb and Jardetzky

2007). Class I viral fusion proteins such as the influenza

Fig. 1 1H spin diffusion HETCOR pulse sequences. a The LC-phase

experiment. A 1H T2 filter is applied before the t1 period to suppress

the rigid peptide 1H magnetization. Only the lipid and water 1H

signals are detected in the t1 dimension. b The gel-phase experiment.

The 1H signals of both peptide and lipids are detected in the t1
dimension

Fig. 2 1D 13C CP-MAS spectra of the PIV5 fusion peptide in POPC/

POPG membranes at 293 and 243 K. a GVAL-FPK4. b IGALV-

FPK4. The peptide signals disappear at ambient temperature due to

intermediate-timescale motion. In the gel-phase of the membrane, the

peptide signals reappear, and the chemical shifts indicate an a-helical

conformation
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virus hemagglutinin (HA), the human immunodeficiency

virus (HIV) env, and the paramyxovirus F protein, undergo

a series of large conformational changes to drive the

merger of the target cell membrane and the virus envelope.

During these unfolding and refolding events, an N-terminal

fusion peptide, originally enclosed in the interior of the

pre-fusion protein globule, becomes exposed and inserts

into the target cell membrane. The extended protein

intermediate, doubly anchored in the virus envelope and

the cell membrane, subsequently folds into a hairpin, in

doing so fusing the cell and viral membranes (Yin et al.

2005, 2006). Determining the orientation and depth of

insertion of the fusion peptide in lipid membranes is

therefore important for elucidating the detailed molecular

events during virus-cell fusion.

In this study, we demonstrate a low-temperature gel-

phase 1H-homonuclear-decoupled HETCOR experiment

for determining the depth of insertion of membrane pro-

teins that undergo intermediate-timescale motion in the LC

lipid membrane. We describe the spectral patterns of sur-

face-bound peptides versus well-inserted peptides obtained

from this gel-phase spin diffusion HETCOR experiment

using structurally known membrane peptides. We then

apply this low-temperature spin diffusion experiment to the

a-helical PIV5 fusion peptide in the anionic POPC/POPG

membrane. Our results not only reveal the qualitative

insertion motif of the peptide, but also show that site-

specific depth resolution can be obtained from this gel-

phase spin diffusion experiment.

Experimental methods

Membrane peptides

The PIV5 fusion peptide was synthesized and purified

using Fmoc chemistry by PrimmBiotech (Cambridge, MA,

USA). The peptide corresponds to residues 103–129 of the

PIV5 F protein, with an amino acid sequence of FAGV-

VIGLAALGVATAAQVTAAVALVK. A DIOXA-KKKK

tag was appended to the C-terminus of this sequence to

increase the solubility of the peptide (Yao and Hong 2013).

Two peptides with different 13C, 15N-labeled residues were

used in the current study. The first sample contains 13C,
15N-labeled residues at G114, V115, A126, and L127

(GVAL-FPK4), while the second peptide contains labeled

I108, G109, A112, L113, and V125 (IGALV-FPK4). The

fusion peptide was reconstituted into POPC and POPC/

POPG (4:1 mol ratio) membranes using an organic solution

mixing protocol. The peptide was dissolved in trifluoro-

ethanol and mixed with lipids in chloroform. The solvents

were removed under a stream of nitrogen gas and the

mixture was lyophilized. The dry powder was then

suspended in 10 mM phosphate buffer (pH = 7.5) with

1 mM EDTA and 1 mM NaN3, dialyzed for 1 day, then

subjected to ultracentrifugation at 55,000 rpm for 4 h at

4 �C. The resulting membrane pellets was transferred to

4-mm MAS rotors. The peptide/lipid molar ratio was 1:20

for these fusion peptide samples.

As a control, we measured the low-temperature HETCOR

spectra of the antimicrobial peptide, protegrin-1 (PG-1),

bound to POPE/POPG (3:1) membranes at a peptide/lipid

molar ratio of 1:12.5. This peptide had been extensively

studied (Hong and Su 2011; Tang and Hong 2009) and is

known from the LC-phase 1H spin diffusion experiment to

insert into the hydrophobic part of the POPE/POPG mem-

brane (Mani et al. 2006). The peptide is 13C-labeled at L5

Ca and V16 13CO (Tang et al. 2007).

Solid-state NMR spectroscopy

The 1D 13C CP-MAS spectra of FPK4 in POPC/POPG

membranes were measured at 293 K and 243 K on a

Bruker DSX-400 MHz (9.4 Tesla) spectrometer. All other

NMR experiments were conducted on a Bruker Avance II

600 MHz spectrometer at a field strength of 14.1 Tesla

using 4 mm MAS probes. Typical radiofrequency field

strengths were 50–70 kHz for 1H and 50 kHz for 13C. 13C

chemical shift were externally referenced to the 13CO

signal of a-Gly at 176.465 ppm on the TMS scale, while

the 1H chemical shift was calibrated using N-formyl-Met-

Leu-Phe-OH, whose 1H chemical shifts have been reported

(Li et al. 2010).

The gel-phase 1H spin diffusion HETCOR spectra were

measured under 7 kHz MAS using the pulse sequence in

Fig. 1b. During the t1 evolution period, the FSLG sequence

(Bielecki et al. 1989) was used to decouple the 1H–1H

dipolar interaction. A mixing time after t1 allowed spin

diffusion to occur, followed by Lee-Goldburg cross

polarization (CP) (1965) to transfer the 1H magnetization

to 13C. The pulse sequence is essentially the rigid-solid

HETCOR experiment with an additional spin diffusion

period. Applied to LC lipid membranes, this experiment

has been used to investigate peptide–water and peptide–

lipid intermolecular interactions (Li et al. 2010; Wang et al.

2012).

The temperatures of the gel-phase HETCOR experi-

ments were chosen to be the highest temperature at which

the membrane peptides were immobilized. To compare the

HETCOR spectra of different samples, we monitored the
1H linewidths of the lipid chain signals, which reflect the

spin diffusion coefficient. For FPK4-containing POPC and

POPC/POPG membranes, the HETCOR experiments were

carried out at 258 K, which is 13 K below the phase

transition temperature of these lipid membranes in the

absence of peptides. The PG-1-containing POPE/POPG
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sample was measured at 253 K, at which the lipid 1H

linewidths were similar to those of the FPK4 samples (see

Fig. 7).

The 1H dimension of the 2D HETCOR spectra was pro-

cessed using moderate line broadening parameters of

LB = -5 and GB = 0.1, which corresponds to a Gaussian

full width at half maximum of 0.15 ppm. This line broad-

ening is smaller than the apparent 1H linewidths of these

membrane samples under the conditions of the experiments.

Results and discussion

The main difference between the LC-phase and gel-phase
1H spin diffusion HETCOR experiments is that the LC-

phase experiment has no 1H homonuclear decoupling during

the t1 evolution period but has a 1H T2 filter before t1, while

the gel-phase experiment requires 1H homonuclear decou-

pling during t1 but no T2 filter (Fig. 1). These differences

match the dynamic properties of the lipid and peptides in the

fluid and gel-phases of the lipid membranes. At high tem-

perature, the 1H T2 filter and the absence of homonuclear

decoupling combine to suppress the 1H magnetization of the

rigid peptide while retaining the magnetization of the

mobile lipid and water, which act as the magnetization

source. The fast rotational diffusion of lipids in the LC

membrane ensures that moderate MAS frequencies alone

are sufficient to give high-resolution 1H spectra (Doherty

and Hong 2009; Oldfield et al. 1987). In contrast, at low

temperature where both the peptides and lipids are immo-

bilized, homonuclear decoupling is necessary to obtain

high-resolution 1H spectra of the peptide and lipids. Under

this condition, the peptide and lipid 1H signals need to be

distinguished in the 1H dimension in order to differentiate

intramolecular versus intermolecular cross peaks. We show

that this assignment is possible based on the characteristic

chemical shifts of functional groups as well as the mixing

time dependence of spectral intensities.

To investigate how low-temperature HETCOR spectra

differ between well-inserted and surface-bound membrane

peptides, we first demonstrate the experiment on two pep-

tides whose depths of insertion were previously determined

using the LC-phase 1H spin diffusion technique. The anti-

microbial peptide, PG-1, has been extensively studied before

and is known to insert into the bacteria-mimetic anionic

membrane, POPE/POPG (Mani et al. 2006; Tang and Hong

2009). In comparison, the PIV5 fusion peptide in the POPC

membrane is an example of a surface-bound membrane

peptide (Yao and Hong 2013). Figure 3 shows the 253 K
1H–13C HETCOR spectra of POPE/POPG-bound PG-1. For

all samples in this study, we used 1H spin diffusion mixing

times of 0, 0.2, 4 and 25 ms. In the absence of spin diffusion,

only one-bond cross peaks were detected. Specifically, in the

L5 Ca cross section, an Ha peak at 4.8 ppm dominates the

Fig. 3 Depth of insertion of

PG-1 in POPE/POPG

membranes by the gel-phase

spin diffusion HETCOR

experiment. a 2D spectra with 0,

0.2 and 25 ms mixing times.

b 1H cross sections of the

peptide L5 Ca peak at 51 ppm

and the lipid CH2 peak at

33 ppm at varying mixing

times. The peptide and lipid

cross sections have very similar

intensity patterns by 25 ms,

indicating that L5 is well

inserted into the middle of the

POPE/POPG membrane. The

spectra were measured at 253 K

under 7 kHz MAS. The 1.5 ppm

peak is a zero-frequency artifact
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spectrum, followed by weak HN and sidechain Hb/Hc cross

peaks at 8.0 and 0.8 ppm. With a 0.2 ms mixing time, the

0.8-ppm peak becomes the strongest, due to the presence of

more sidechain protons than backbone protons. At longer

mixing times of 4 and 25 ms, the 1H spectral pattern changed

significantly, with a strong 1H peak at 1.1 ppm and a weak

signal at 4.9 ppm, and the HN signal has disappeared. The

1.1-ppm peak can be assigned to lipid CH2 protons, based on

its slightly different chemical shift and its narrower linewidth

(1.2 ppm) compared to the L5 Hb/Hc linewidths of 1.6 ppm.

The assignment of the 4.9-ppm peak to water is based on the

similar intensity distribution of the peptide and lipid cross

sections at 25 ms mixing and the disappearance of the pep-

tide HN peak. These observations indicate that spin diffusion

has equilibrated the proton reservoir of the peptide and its

neighboring lipid and water molecules by 25 ms, and the L5

region of PG-1 is well inserted into the hydrophobic part of

the lipid membrane, with shorter distances to the lipid chains

than to water. This conclusion is consistent with the LC-

phase 1H spin diffusion results, which found PG-1 to be

inserted into the hydrophobic center of the POPE/POPG

membrane (Mani et al. 2006). Therefore, the signature of an

inserted peptide in the gel-phase HETCOR experiment is the

similar intensity distribution between the lipid and peptide

cross sections within a modest mixing time.

Figure 4 shows the gel-phase HETCOR spectra of the

b-strand FPK4 bound to the POPC membrane. While the

zero-mixing spectrum is similar to the PG-1 spectrum, by

25 ms, the peptide 1H cross sections have become com-

pletely different: they have much higher water intensity

than the lipid chain 1H signals, indicating that the b-strand

FPK4 resides on the surface of the POPC bilayer, consis-

tent with the high-temperature 1H spin diffusion results

(Yao and Hong 2013). In contrast, the lipid cross section at

25 ms is similar to the POPE/POPG cross section in Fig. 3,

with the CH2 self-correlation peak dominating the water

signal. The 5.2-ppm peak in the peptide cross sections at 4

and 25 ms can be assigned to water rather than Ha because

its linewidth (0.7 ppm) is much narrower than the Ha
linewidth (1.8 ppm) in the zero-mixing spectrum. Taken

Fig. 4 Depth of insertion of

GVAL-FPK4 in the POPC

membrane by gel-phase spin

diffusion HETCOR. a 2D

spectra with 0, 0.2 and 25 ms

mixing. b 1H cross sections of

the peptide (red) and lipid CH2

(black) peaks at various mixing

times. The 1H cross sections of

peptide come from the sum of

all Ca peaks. The peptide cross

section shows much higher

water cross peak than the lipid

cross section by 25 ms,

indicating that FPK4 lies on the

surface of the POPC bilayer.

The spectra were measured at

258 K under 7 kHz MAS
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together, Figs. 3 and 4 indicate that membrane-inserted and

surface-bound peptides have very different 1H intensity

distributions: the former has strong lipid CH2 peaks and

weak water cross peaks, while the latter displays the

opposite relative intensities.

Using this gel-phase spin diffusion HETCOR experiment,

we investigated the depth of insertion of the PIV5 fusion

peptide in the anionic POPC/POPG membrane. Fig. 5 shows

representative 2D HETCOR spectra of GVAL-FPK4 and

IGALV-FPK4 at 258 K. The sum of the peptide Ca cross

sections shows similar 1H intensity distributions as the lipid

CH2 cross section by 25 ms, indicating that the a-helical

FPK4 is well inserted into the POPC/POPG membrane.

Moreover, the relative intensity of the water and lipid cross

peaks differs among different residues. 13C cross sections at

the water and lipid CH2 frequencies indicate that residues

near the two ends of the peptide, such as I108, G109 and

V125, have higher water/lipid intensity ratios than residues in

the middle of the peptide such as A112 and L113 (Fig. 6).

The difference is particularly clear at short mixing times but is
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Fig. 5 Depth of insertion of the

PIV5 fusion peptide in POPC/

POPG membranes by gel-phase
1H spin diffusion HETCOR.

a 2D spectra of GVAL-FPK4 at

0 and 25 ms mixing. b 1D 1H

cross sections of the peptide 13C

(red) and lipid CH2 (black)

peaks at various mixing times.

The peptide 1H cross sections

are the sum of all Ca peaks and

the L127 Cb peak. c 2D spectra

of IGALV-FPK4 at 0 and 25 ms

mixing. d 1D 1H cross sections

of the peptide (red) and lipid

CH2 (black) signals as a

function of mixing time. The

similarity of the peptide and

lipid cross sections by 25 ms

indicate that the a-helical FPK4

is well inserted into the POPC/

POPG membrane. All spectra

were measured at 258 K under

7 kHz MAS
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also detectable at the longest mixing time of 25 ms. There-

fore, the N- and C-termini of FPK4 have closer contacts with

water than the middle of the peptide, strongly suggesting that

FPK4 spans both leaflets of the bilayer (Fig. 6c). The alter-

native scenario that the peptide might be highly curved such

that the N- and C-termini contact water molecules on the

same side of the bilayer can be reasonably ruled out, since the
13C chemical shifts of this peptide indicate a relatively

straight a-helix, without significant kinks or bend (Yao and

Hong 2013). These data indicate that the gel-phase spin dif-

fusion technique has residue-specific depth resolution, in

contrast to the LC-phase experiment. The reason for this

difference is that at low temperature, lipids and peptides have

similar spin diffusion coefficients, thus the rate of magneti-

zation transfer depends on the actual distances of nuclear

spins from the magnetization source, rather than the mini-

mum distance of the peptide from the source spins.

In addition to the water/lipid intensity ratio, the 1H line-

width of the peptide-lipid cross peaks also provides infor-

mation about the insertion state of the peptide. For the well

inserted POPC/POPG-bound FPK4, the peptide Ca to lipid

CH2 cross peak has a 1H linewidth of 0.9 ppm, which is the

same as the 1H linewidth of the lipid self-correlation peak

(Fig. 5b), supporting complete magnetization exchange

between the peptide and lipid chains. The same was observed

for PG-1 in the POPE/POPE membrane. In contrast, for the

POPC-bound FPK4 (Fig. 4), the peptide cross peak with CH2

groups resonates at a 1H chemical shift of 1.2 ppm with a

linewidth of 1.1 ppm, while the lipid self-correlation peak

resonates at 1.4 ppm with a linewidth of 0.8 ppm. These

subtle but reproducible differences indicate that peptide

sidechain Hb/Hc protons make a significant contribution to

the 1.2-ppm peak, and the magnetization of the surface-

bound FPK4 and the lipid chains are not equilibrated by

25 ms.

The inserted topology of the a-helical PIV5 fusion

peptide, together with its intermediate-timescale motion at

ambient temperature, gives insight into the structure of

FPK4 in the POPC/POPG membrane. If the peptide is

monomeric and not significantly tilted, then its dynamics

should be much faster than the NMR interactions and fast-

averaged spectra with narrow 13C linewidths should be

observed. Thus, the fact that the FPK4 spectra are broad-

ened beyond detection between 263 K and 313 K indicates

that the a-helical FPK4 is oligomerized and significantly

tilted. Since the water-soluble ectodomain of the F protein

is trimeric, the fusion peptide domain may also be trimeric

in the lipid membrane. But trimerization alone is unlikely

to be sufficient for causing intermediate-timescale motion,

since even membrane proteins with seven transmembrane

helices have been shown to undergo fast motion in fluid

membranes (Lewis et al. 1985). Instead, the fusion peptide

assembly is likely significantly tilted in the POPC/POPG

membrane in order for intermediate dynamics to persist

over a wide temperature range (Fig. 6c).

The membrane-spanning topology of the a-helical PIV5

fusion peptide in the POPC/POPG membrane differs dra-

matically from the surface-bound topology of the b-strand

FPK4 in neutral POPC membranes (Yao and Hong 2013).

Our recent data correlating membrane curvature and
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Fig. 6 Depth resolution of the

gel-phase HETCOR

experiment, shown by the

spectra of FPK4 bound to the

POPC/POPG membrane.

a IGALV-FPK4 13C cross

sections at the lipid CH2 (black)

and water (blue) frequencies

from the 4 ms 2D spectrum. The

water/lipid intensity ratios are

higher for the terminal residues

(I108, G109 and V125) than for

residues in the middle of the

peptide (A112 and L113).

b GVAL-FPK4 13C cross

sections at the lipid CH2 and

water frequencies from the

25 ms 2D spectrum. The water/

lipid intensity ratios are higher

for the terminal residues A126

and L127 than for the interior

residues G114 and V115.

c Illustration of the full insertion

of FPK4 into the POPC/POPG

membrane
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hydration with FPK4 conformation suggested the b-strand

conformation to be more relevant for membrane intermedi-

ates of the fusion pathway, while the a-helical conformation

is associated with well-hydrated lamellar membranes that

may be relevant for the pre-fusion and post-fusion states.

Additional experiments will be necessary to test these

hypotheses further. Interestingly, solid-state NMR mea-

surements showed that the HIV fusion peptide forms an

oligomeric b-sheet in virus-mimetic lipid membranes and

spans one leaflet of the lipid bilayer (Qiang et al. 2009). This

partially inserted b-sheet peptide also incurs membrane

curvature (Gabrys et al. 2010). Information about a-helical

viral fusion peptides so far mainly came from solution NMR

studies of micelle-bound influenza HA, which found the

peptide to form a bent helix that is shallowly inserted into the

detergent micelle (Han et al. 2001; Lorieau et al. 2010).

The gel-phase 1H spin diffusion HETCOR experiment is

best applied at the highest temperature where the membrane

peptides are immobilized. At moderate low temperature, the

water molecules remain partly mobile, which would give a

distinct and narrow 1H signal that can be readily resolved

from the peptide Ha signals. At moderate low temperature,

the mixing times required to distinguish well inserted and

surface-bound membrane peptides are longer than at extre-

mely low temperatures, thus facilitating the distinction

between topologically different membrane peptides. Finally,

the use of moderate low temperature avoids the potential

hazard of changing the peptide-lipid interactions compared

to the physiological situation. To compare the depths of the

membrane peptides in different lipid bilayers, the HETCOR

experiments should be conducted at similar reduced tem-

peratures from the membrane phase transition temperature

so that the lipid chain dynamics are comparable. Figure 7

shows the undecoupled 1H spectra of POPC/POPG, POPC,

and POPE/POPG membranes at 253–258 K, where the 2D

HETCOR spectra were measured. The CH2
1H linewidths

are similar, thus allowing the comparison of the relative

depths of the PIV5 fusion peptide and PG-1. 2H NMR of

chain-deuterated lipids can also be used to verify membrane

dynamics at the desired temperatures.

In conclusion, the depth of insertion of membrane

peptides and proteins that exhibit intermediate-timescale

motion in the LC phase of lipid membranes can now be

determined using the gel-phase spin diffusion HETCOR

experiment. This gel-phase experiment not only overcomes

the exchange-broadening problem of many membrane

peptides, but also provides site-specific depth resolution,

which is absent from the LC-phase 1H spin diffusion

experiment. This gel-phase HETCOR experiment aug-

ments the NMR toolbox for determining the membrane

topology of peptides and proteins. Further improvement of

this technique can be envisioned, for example using

advanced 1H decoupling and isotopic dilution methods to

enhance the resolution of the 1H dimension to better dis-

tinguish lipid and protein signals.
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